Artboard 8 copy 16.png

SomaDetect is two pieces of magic working together - an incredible sensor technology with cutting-edge computer-vision and deep-learning algorithms

The in-line, optical sensor technology is the core of SomaDetect’s innovative platform. SomaDetect uses light scattering technology for rapid, on-site determinations of major compounds in raw milk. SomaDetect monitoring equipment fits into the milking line of existing dairy equipment, making it technologically accessible and cost-effective for dairy producers whether they have a state-of-the-art robotic milking system, a more common milking parlor system, or a tie-stall system. This technology does not require the use of any chemicals, meaning that the milk that is used to take measurements is unaltered, and can be returned to the milking line after measurement. This reduces the operational costs of the technology and eliminates the use of chemicals inside of dairy barns.

Artboard 8 copy 17.png

What is light scattering?

SomaDetect relies on the principle of light scattering: A beam of directed light passes through a medium (raw milk) and hits small particles that cause the beam to change direction and scatter. During this process, a portion or the light may be absorbed or reflected altering the intensity of the scattered beam. Particles of different sizes, in various concentrations, will have unique scattering patterns that can be observed.
Until SomaDetect, the application of forward-angle light scattering in fluids has been limited to specific applications, and has often been too costly for non-laboratory uses. With SomaDetect, it is now possible to detect several compounds across a wide range of particulate sizes, including small and large molecules, single-cells, using a cost-effective sensor system.

Artboard 8 copy 18.png

Predicting trends with Deep Learning and Neural Nets

Artificial neural networks use algorithms, big data, and the computational power of graphic processing units (GPUs) to find patterns and connexions between data sets. This branch of machine learning enables computers to achieve complex calculations and learn at speed, accuracy, and scale that has not before been possible.

SomaDetect uses computer vision and deep neural networks to build robust algorithms to predict presence and concentrations of major compounds in raw milk. SomaDetect has collected thousands of milk samples to train a predictive model. This data set has yielded algorithms that act as the baseline of prediction, while  additional data sets will allow SomaDetect to improve and deepen the predictive algorithm and ensure accuracy and consistency across a wide range of use cases.

This approach has enabled the company to develop a series of robust models for determinations of fat content, protein content, trace antibiotics, and progesterone. Together, these compounds make it possible to ensure milk quality and to rapidly diagnose multiple major dairy diseases, including sub-clinical and clinical mastitis, ketosis, and acidosis.